Optimality Conditions and Duality in Multiobjective Programming with Invexity*
نویسندگان
چکیده
( , ) ρ Φ − invexity has recently been introduced with the intent of generalizing invex functions in mathematical programming. Using such conditions we obtain new sufficiency results for optimality in multiobjective programming and extend some classical duality properties.
منابع مشابه
Nonsmooth Multiobjective Fractional Programming with Generalized Invexity
In this paper, we consider nonsmooth multiobjective fractional programming problems involving locally Lipschitz functions. We introduce the property of generalized invexity for fractional function. We present necessary optimality conditions, sufficient optimality conditions and duality relations for nonsmooth multiobjective fractional programming problems, which is for a weakly efficient soluti...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کاملMultiobjective Variational Programming under Generalized Vector Variational Type I Invexity
Mond-Weir type duals for multiobjective variational problems are formulated. Under generalized vector variational type I invexity assumptions on the functions involved, sufficient optimality conditions, weak and strong duality theorems are proved efficient and properly efficient solutions of the primal and dual problems.
متن کاملNonsmooth Continuous-Time Multiobjective Optimization Problems with Invexity
A few Karush-Kuhn-Tucker type of sufficient optimality conditions are given in this paper for nonsmooth continuous-time nonlinear multi-objective optimization problems in the Banach space L∞ [0, T ] of all n-dimensional vector-valued Lebesgue measurable functions which are essentially bounded, using Clarke regularity and generalized convexity. Further, we establish duality theorems for Wolfe an...
متن کامل